Hand-Arm Vibration Exposure in Industry

SIA Visions Conference – Gladstone QLD
October 2015
Rebecca Devine
Vibration Exposure

- Everyday exposure
 - Car, bus, train ...
- Beneficial, comfortable, uncomfortable & harmful
 - Intensity, frequency and exposure
- WBV
 - Feet, buttocks & back
 - Mobile equipment - terrain
- HAV
 - Hands & arms
 - Powered hand tools and hand guided machinery
 - Impact, non-impact, striking tools
Health Effects

• Hand-Arm Vibration Syndrome (HAVS)
 – Sensory, neurological and musculoskeletal
 – 1911, first reported in Italian stonemasons
 – 1918, clinical ID in USA stone-carvers and cutters
 – 1983, vibration white finger, VWF (Raynaud’s of occupational origin)
 – Signs and symptoms
 • Numbness
 • Aches and pain
 • Blanching (turning pale and ashen)
 • Pins and needles (tingling)
 • Stiffness
 • Loss of grip strength, sensitivity and dexterity
 • Sleep disturbances
 • Neck and shoulder pain
Circulatory Effects

- **Vasoconstriction**
 - Response to cold, damp or vibration
- **Increasing vibration intensity** – greater sympathetic response
- **Blanching attacks** more frequent in winter and in morning or night when metabolic rate is lower
- **May last** a few minutes to hours
- **Genetic condition**
 - Raynaud’s Phenomenon
 - More prevalent in cooler regions (30% v 10%) and females (77% v 5%)
Neurological Effects

• Sensory and motor nerves
 – Pins and needles
 – Coordination and dexterity

• Symptoms difficult to distinguish from Carpal Tunnel Syndrome
 – Tingling after using vibrating tools and at night
 – Nuisance, painful and could be dangerous

• Both have significant impact on home and work life
Musculoskeletal Effects

- Co-existence of HAVS with:
 - Carpal Tunnel Syndrome
 - Dupuytren’s disease
 - Tendonitis and Tenosynovitis
 - Hearing loss

- Symptoms include:
 - Stiffness and pain in the hands, wrists, elbows and shoulder
 - Impaired grip strength

- Often working in sustained or awkward postures and with forceful exertions
Prevalence of HAVS

- UK – HAVS is widely promoted and strict legislation enacted in 1993
 - Sharp increase in reporting, but now it is low
- Australia – HAVS is not well known and little specific legislation (until now...)
 - Presume there is under-reporting
- Most research on prevalence in cooler climates with focus on VWF
 - Not common in Australia (warm climate)
 - Not relevant?
Control Measures

Avoid Exposure to HAV

• Alternative work methods
 – Automating the work
 – Using alternative equipment
 – Using alternative work processes

• Equipment selection
 – Selecting the lower vibration tool that is suitable
 – Selecting equipment with appropriate suspension

• Purchasing policy
 – Replacing old equipment
 – Testing equipment before buying
 – Asking manufacturers to provide the declared vibration value
Control Measures

Reduce Exposure to HAV

• Isolation
 – Using vibration-isolating handles or gloves

• Reducing impulsiveness
 – By product selection

• Work methods
 – Using equipment appropriate for the job

• Workplace design
 – Improve workplace design to limit load on hand and wrist
 – Suspend tools to balance weight

• Maintenance
 – Maintenance programs to keep equipment in good order
 – Sharpen tools (blunt tools do not work efficiently)
Control Measures

Reduce the effects of HAV

• Working posture
 – Appropriate working posture
 – Training for workers

• Physical condition
 – Physical exercises

• Equipment
 – Gloves to warm hands
 – Heated handles

• Work organisation
 – Limit exposure time and/or adapt work schedules

• Health surveillance
 – Health monitoring
Anti-vibration Gloves

• Pros
 – Commercially available
 – Designed to lower acceleration levels and shift vibration to less harmful frequency range
 – Air bladder design better at medium and high frequency
 – Wrist support is helpful

• Cons
 – Thickness is bulky
 – Reduces tactile ability and grip strength
 – May amplify vibration at low frequency
Anti-vibration Gloves

- Vibration attenuating materials
 - Viscoelastic material (gel)
 - Air bladder
- ISO10819
 - Grip force: maintained at 30N (+- 5N)
 - Feed force: maintained at 50 N (+- 8N)
 - Room temperature: 20°C (+- 5°C)
 - Humidity: below 70%
 - Conditioning of gloves: stored at room temperature for at least 30 minutes and worn by subject for at least three minutes before testing
 - Test period: at least 30 seconds
 - Posture: standing upright on a horizontal surface; forearm in the axis of vibration; elbow at 90° (+-10°) and not touching the body during the test; wrist bent from 0° (neutral) to 40° (dorsal) maximum
Anti-vibration Gloves

• Alternative testing methods
 – Pathological changes and subjective judgement
 – Hand-glove interface measurement (palm adapter)
 – On-the-hand measurements: biodynamic responses of the hand-arm system and validity of measuring at specified points along the hand-arm system
 – On-the-hand measurements: alternative methods for testing effectiveness of gloves
Industry Study

• Questionnaire on self-reported symptoms
 – Identified:
 • Self-reported symptoms
 • Workgroups with highest prevalence of symptoms
 – Study population – 12 workers for each tool
 • Tools these workgroups used
 – 7 tools identified

• 4 anti-vibration gloves plus ‘normal’ glove
• Workshop conditions simulating usual work activities
1” D handle
1” pistol
½” pistol
Rivet Buster
7” air grinder
5” electric grinder
Air Drill
Impacto
Elliott
Decade
Ansell
Leather
Hyd-tuff
Samples of postures adopted during accelerometer testing for (left to right) impact wrench, grinder, rivet buster and air drill
Recommendations

• Investigate the influence of:
 – Variables on results of ISO10819
 • Body mass, hand size, temperature, humidity, grip and feed forces, posture and stance
 – BMI on vibration transfer in the hand-arm system
 – Hand-size on contact forces on vibrating tools
 – Contact forces on effectiveness of gloves
 – Position / posture of shoulder, elbow and wrist on vibration transfer in the hand-arm system
 – Temperature / humidity on vibration isolation performance of dampening materials
 – Longevity of dampening materials
Recommendations

• Investigate prevalence of HAVS in warmer climates and consider co-existence of CTS
• Challenge the relevance of guidelines based on prevalence of VWF
• Investigate correlations between HAVS and NIHL
Questions?

Thank-you to:

• Queensland Alumina Limited for supporting and cooperating in this study.
• Central Queensland University for their academic guidance and technical support.